电力系统储能效率

本文通过分析储能电站当前的能效情况,找出影响能效的重要因素,并提出改进设计方案,来提升储能电站的总体能效层次,推动能源的高效利用进程。 通过对储能电站进行改良设计,能够显著提升储能电站的效能程度,缩减能量耗散,增加电池运用时长,对加速储能电站的扩大化发展和使用具备关键的学术价值与实际作用。 1 储能电站能效现状分析 1.1 储能效率现状 储能效率是评估储能电站效能的重要指标之一,它体现了储能系统在电能的积蓄与放出流程中所产生的能量耗散状况。 当前,储能效能的平均状态受多种要素的作用,涵括储能科技种类、装置陈旧、运作环境等。什么是储能效率?储能效率是指储能元件储存起来的电量与输入能量的比。 储能技术主要分为物理储能(如抽水储能、 压缩空气储能 、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。 蓄电池储能效率关系到蓄电池的寿命和成本,要提高蓄电池储能效率就要了解储能效率都受哪些因素的影响,除了蓄电池自身构造会影响其储能效率,如元件材质、制造工艺、电解液配置等,蓄电池储能效率也与充电状态、充放电电流、充电电压、环境温度等一些外部因素有很大关系。 储能技术主要分为物理储能(如抽水储能、 压缩空气储能 、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。. 如何计算储能电站各项效率?在计算储能电站各项效率的时候要注意能量潮流方向,注意辅助系统用电在充电和放电过程中均作为负荷损耗考虑。 计算储能系统各项效率时应结合规范定义判定计算应用双向效率还是是单向效率。 以上模型效率统计如下:. 储能技术有哪些?储能技术主要分为物理储能(如抽水储能、 压缩空气储能 、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。 根据各种储能技术的特点,飞轮储能、超导电磁储能和超级电容器储能适合于需要提供短时较大的脉冲功率场合,如应对电压暂降和瞬时停电、提高用户的用电质量,抑制电力系统低频振荡、提高系统稳定性等;而抽水储能、压缩空气储能和电化学电池储能适合于系统调峰、大型应急电源、可再生能源并入等大规模、大容量的应用场合。 蓄电池储能效率测试系统的基本原理见图,系统的主要元件有:单相智能电表、充电器、逆变器、单片机、负载等。. 蓄电池的储能效率与放电率有何关系?充电状态是指蓄电池在充电时达到的状态,简而言之满充时的充电状态为100%。 根据国家的相关规定,在充电状态不同时对蓄电池的储能效率有不同的标准,在充电状态小于50%时,要求蓄电池储能效率大于95%;充电状态在75%的时候,要求蓄电池储能效率大于90%;充电状态在90%时,要求蓄电池储能效率大于85%。 由蓄电池特性可知,在对蓄电池进行放电时,大电流放电蓄电池实际释放的能量小于小电流放电时蓄电池释放的能量,这说明蓄电池的储能效率与放电率有很大的关系。 通过图2 [1] 能够看出蓄电池的库伦效率在电流变大时也不断增加,这是由于当大电流充放电时,会缩短蓄电池的充放电时间,所以蓄电池由于自放电而损失的能量就比较小。
SolarVolt Innovations(上海) 地址:上海市奉贤区 电话:+8613816583346
Top